Sign Up

Sign up to join our community!

Sign In

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

You must login to ask a question.

GEOLOGY HUB Latest Questions

What are hydrothermal solutions?

Hydrothermal mineral deposits are those in which hot water serves as a concentrating, transporting, and depositing agent. They are the most numerous of all classes of deposit.

Hydrothermal deposits are never formed from pure water, because pure water is a poor solvent of most ore minerals. Rather, they are formed by hot brines, making it more appropriate to refer to them as products of hydrothermal solutions. Brines, and especially sodium-calcium chloride brines, are effective solvents of many sulfide and oxide ore minerals, and they are even capable of dissolving and transporting native metals such as gold and silver.

The water in a hydrothermal solution can come from any of several sources. It may be released by a crystallizing magma; it can be expelled from a mass of rock undergoing metamorphism; or it may originate at Earth’s surface as rainwater or seawater and then trickle down to great depths through fractures and porous rocks, where it will be heated, react with adjacent rocks, and become a hydrothermal solution. Regardless of the origin and initial composition of the water, the final compositions of all hydrothermal solutions tend to converge, owing to reactions between solutions and the rocks they encounter.

Hydrothermal solutions are sodium-calcium chloride brines with additions of magnesium and potassium salts, plus small amounts of many other chemical elements. The solutions range in concentration from a few percent to as much as 50 percent dissolved solids by weight. Existing hydrothermal solutions can be studied at hot springs, in subsurface brine reservoirs such as those in the Imperial Valley of California, the Cheleken Peninsula on the eastern edge of the Caspian Sea in Turkmenistan, in oil-field brines, and in submarine springs along the mid-ocean ridge. Fossil hydrothermal solutions can be studied in fluid inclusions, which are tiny samples of solution trapped in crystal imperfections by a growing mineral.

Because hydrothermal solutions form as a result of many processes, they are quite common within Earth’s crust. Hydrothermal mineral deposits, on the other hand, are neither common nor very large compared to other geologic features. It is apparent from this that most solutions eventually mix in with the rest of the hydrosphere and leave few obvious traces of their former presence. Those solutions that do form mineral deposits (and thereby leave obvious evidence of their former presence) do so because some process causes them to deposit their dissolved loads in a restricted space or small volume of porous rock. It is most convenient, therefore, to discuss hydrothermal mineral deposits in the context of their settings.

Veins

The simplest hydrothermal deposit to visualize is a vein, which forms when a hydrothermal solution flows through an open fissure and deposits its dissolved load. A great many veins occur close to bodies of intrusive igneous rocks because the igneous rocks serve as heat sources that create convectively driven flows in hydrothermal solutions. Precipitation of the minerals is usually caused by cooling of the hydrothermal solution, by boiling, or by chemical reactions between the solution and rocks lining the fissure. Some famous deposits are the tin-copper-lead-zinc veins of Cornwall, England; the gold-quartz veins of Kalgoorlie, Western Australia, Australia, and Kirkland Lake, Ontario, Canada; the tin-silver veins of Llallagua and Potosí, Bolivia; and the silver-nickel-uranium veins of the Erzgebirge, Germany, which were first described by Georgius Agricola in his book De re metallica (1556).

hot springs and epithermal veins

Hydrothermal deposits formed at shallow depths below a boiling hot spring system are commonly referred to as epithermal, a term retained from an old system of classifying hydrothermal deposits based on the presumed temperature and depth of deposition. Epithermal veins tend not to have great vertical continuity, but many are ex

Leave an answer

You must login to add an answer.

Related Questions

Latest Geology Articles

GEOLOGY HUB Latest Articles

What is Cinnabar

✳️Cinnabar is a toxic mercury sulfide mineral with a chemical composition of HgS. 🔷It is the only important ore of mercury. It has a bright red color that has caused people to use it as a pigment, and carve it into jewelry and ornaments for thousands of years in many parts of the world. Its […]

Kimberlite

🔷Kimberlites, named after the town of Kimberly, South Africa, where they were first described, are volcanic rocks that originate in Earth’s mantle.🔷They are mined exclusively for diamonds. The photo shows the “Big Hole” at Kimberly.🔷The Hole was mined from 1871 to 1914 and reached a depth of 240 m below the surface. Subsequently it filled […]

Geological Time Scale

Geological Time Scale The geological time scale is a system of chronological measurement that relates geological events and geological time to a numerical scale. It is used to describe the timing and relationships between events that have occurred throughout Earth’s history. The time scale is divided into four main parts: Eons, Eras, Periods, and Epochs. […] Table of Contents Toggle Geological Time Scale

What are Rare Earth Elements and why are they important?

What are Rare Earths?  The Japanese call them “the seeds of technology.”  The US Department of Energy calls them “technology metals.”  They make possible the high tech world we live in today – everything from the miniaturization of electronics, to the enabling of green energy and medical technologies, to supporting a myriad of essential telecommunications and defense systems.  […] Table of Contents Toggle What are Rare Earths?Which Elements ...

Geology 101

Geology 101 is the study of the Earth and its materials, structures, processes, and history. It is a broad field that encompasses many different disciplines, including mineralogy, petrology, paleontology, and geophysics. Geologists study the Earth’s physical features, including its rocks, minerals, soils, and water. They also study the Earth’s internal structure and the processes that […] Table of Contents Toggle Why Study Geology?What Do GEOSCIENTISTS ...

Volcano

What is Volcano I heard about the volcano before 🤔??….We all see volcanoes in movies and news, but did you ask yourself why or how do they happen? On our trip today, we will explore the volcano and see its formation, why it happens, and how.. Are you ready, hero ??Let’s start our journey The […] Table of Contents Toggle What is VolcanoOne ...

What is an Unconformity in Geology

An unconformity is a surface of erosion or non-deposition that separates two rock units that have different ages. It represents a time gap in the geologic record, and it occurs when sedimentary rocks are tilted, uplifted, and eroded before new sediment is deposited on top of them. There are three types of unconformities: Disconformities A […] Table of Contents Toggle There are three types of unconformities:

Mineral

Minerals are homogeneous, naturally occurring, inorganic solids that have a definite crystalline structure and chemical composition. In 1995, the World Minerals Organization put another definition saying that “a mineral is an element or a chemical compound that is naturally crystalline and formed as a result of geological processes.”Minerals have their own specific physical properties which […] Table of Contents Toggle Minerals are classified according to their chemical composition.

Geology Online Quizzes Questions and Answers

Geology online Quizzes questions and answers. Free online quiz with multiple-choice questions (MCQ) without registration. Geology Multiple Choice Questions geology questions and answers | geology questions for competitive exams | geology exam questions. Geology quiz questions and answers.geology quizes. Geology online quiz.

Metamorphism

The mineralogical, chemical, and structural adjustment of solid rocks to physical and chemical conditions which have generally been imposed at depth below the surface zones of weathering and cementation, and which differ from the conditions under which the rocks in question originated. Metamorphism means to “change form,”. In other words, metamorphism is a process that […] Table of Contents Toggle Process of MetamorphismWhat are types ...

All Geology Articles