Geologists do not use carbon-based radiometric dating to determine the age of rocks. Carbon dating only works for objects that are younger than about 50,000 years, and most rocks of interest are older than that. Carbon dating is used by archeologists to date trees, plants, and animal remains; as well as human artifacts made from wood and leather; because these items are generally younger than 50,000 years. Carbon is found in different forms in the environment – mainly in the stable form of carbon-12 and the unstable form of carbon-14. Over time, carbon-14 decays radioactively and turns into nitrogen. A living organism takes in both carbon-12 and carbon-14 from the environment in the same relative proportion that they existed naturally. Once the organism dies, it stops replenishing its carbon supply, and the total carbon-14 content in the organism slowly disappears. Scientists can determine how long ago an organism died by measuring how much carbon-14 is left relative to the carbon-12.
Carbon-14 has a half life of 5730 years, meaning that 5730 years after an organism dies, half of its carbon-14 atoms have decayed to nitrogen atoms. Similarly, 11460 years after an organism dies, only one quarter of its original carbon-14 atoms are still around. Because of the short length of the carbon-14 half-life, carbon dating is only accurate for items that are thousands to tens of thousands of years old. Most rocks of interest are much older than this. Geologists must therefore use elements with longer half-lives. For instance, potassium-40 decaying to argon has a half-life of 1.26 billion years and beryllium-10 decaying to boron has a half-life of 1.52 million years. Geologists measure the abundance of these radioisotopes instead to date rocks.