Sign Up

Sign up to join our community!

Sign In

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

You must login to ask a question.

GEOLOGY HUB Latest Questions

Marine regression is a geologic event in which areas of the seafloor are exposed above sea level, thus changing the coastline and the corresponding increase in the surface area of emerged land. Regressions can be caused by an actual drop in ...Read more

Marine regression is a geologic event in which areas of the seafloor are exposed above sea level, thus changing the coastline and the corresponding increase in the surface area of emerged land.

Regressions can be caused by an actual drop in sea level that may be caused by glaciation, or by a rise in the earth’s crust caused by tectonic movements, or by subsidence of the ocean floor related to episodes of subduction of the earth’s crust during ongoing plate tectonic movements.

Read less

The continents do not float on a sea of molten rock. The continental and oceanic crusts sit on a thick layer of solid rock known as the mantle. While there is a layer of liquid rock in the earth known ...Read more

The continents do not float on a sea of molten rock. The continental and oceanic crusts sit on a thick layer of solid rock known as the mantle. While there is a layer of liquid rock in the earth known as the outer core, this layer is about 3000 km below earth’s surface and is separated from the surface by the thick solid mantle. The tectonic plates do not slowly drift over time because they are floating on a layer of liquid rock. They drift because they are sitting on a layer of solid rock (the upper mantle or “asthenosphere”) that is weak and ductile enough that it can flow very slowly under heat convection, somewhat like a liquid.

If there is not a giant sea of magma under the continents, where does lava come from? The molten lava that spews out of volcanoes is created locally right under the volcano rather than being released from a global sea of magma. Magma is created when pressure changes melt the rock. For instance, as two tectonic plates collide, one plate may get forced under the other plate. As it does so, the plate that is forced down (subducted) releases water into the upper mantle which lowers the pressure enough to melt the rock. Localized regions of magma form in the mantle near subduction zones. The mantle can then rise and create volcanoes. The point is that magma is created in small pockets (small relative to the size of the earth) as part of the tectonic plate movement, and does not exist as a global sea of magma just under the crust. The confusion about the state of the upper mantle perhaps arises from the way diagrams are presented. For instance, the image above shows the mantle in a glowing orange color. This coloring can be confused to mean that this layer is hot liquid rock, like lava. In reality, the mantle is solid, and the coloring is just meant to indicate that the rock is hot and flowing slowly under heat convention.

Read less

Geologists do not use carbon-based radiometric dating to determine the age of rocks. Carbon dating only works for objects that are younger than about 50,000 years, and most rocks of interest are older than that. Carbon dating is used by ...Read more

Geologists do not use carbon-based radiometric dating to determine the age of rocks. Carbon dating only works for objects that are younger than about 50,000 years, and most rocks of interest are older than that. Carbon dating is used by archeologists to date trees, plants, and animal remains; as well as human artifacts made from wood and leather; because these items are generally younger than 50,000 years. Carbon is found in different forms in the environment – mainly in the stable form of carbon-12 and the unstable form of carbon-14. Over time, carbon-14 decays radioactively and turns into nitrogen. A living organism takes in both carbon-12 and carbon-14 from the environment in the same relative proportion that they existed naturally. Once the organism dies, it stops replenishing its carbon supply, and the total carbon-14 content in the organism slowly disappears. Scientists can determine how long ago an organism died by measuring how much carbon-14 is left relative to the carbon-12.

Carbon-14 has a half life of 5730 years, meaning that 5730 years after an organism dies, half of its carbon-14 atoms have decayed to nitrogen atoms. Similarly, 11460 years after an organism dies, only one quarter of its original carbon-14 atoms are still around. Because of the short length of the carbon-14 half-life, carbon dating is only accurate for items that are thousands to tens of thousands of years old. Most rocks of interest are much older than this. Geologists must therefore use elements with longer half-lives. For instance, potassium-40 decaying to argon has a half-life of 1.26 billion years and beryllium-10 decaying to boron has a half-life of 1.52 million years. Geologists measure the abundance of these radioisotopes instead to date rocks.

Read less

Minerals or small particles of rocks, become rocks through pressure and temperature, often deep inside the earth’s core, or simply through pressure for instance on the seabed.   Wherever many small things become something big it is usually through compression, temperature, or ...Read more

Minerals or small particles of rocks, become rocks through pressure and temperature, often deep inside the earth’s core, or simply through pressure for instance on the seabed.

 

Wherever many small things become something big it is usually through compression, temperature, or pressure.

 

The opposite process – large things being worn into smaller particles – usually comes through another sort of force. Either weathering, erosion – action by wind, rain, and water – is responsible.

 

Gradually many rocks are eroded by movement of ice and water over them or the wind action also to become finer and finer and form little grains – e.g. of sand or of soil.

Read less

Petrology is important because it can inform mineral prospecting studies. Petrology is the branch of geology that is concerned with the study of how rocks are formed and how they change over time. This knowledge can help a geologist know ...Read more

Petrology is important because it can inform mineral prospecting studies. Petrology is the branch of geology that is concerned with the study of how rocks are formed and how they change over time. This knowledge can help a geologist know what kinds of minerals might be present in an area

Read less

Granite is a common, coarse-grained, hard igneous rock consisting chiefly of quartz, orthoclase or microcline, and mica. Granite has been used as a building material since ancient times. It is one of the oldest and most durable building products available, ...Read more

Granite is a common, coarse-grained, hard igneous rock consisting chiefly of quartz, orthoclase or microcline, and mica. Granite has been used as a building material since ancient times. It is one of the oldest and most durable building products available, and will far outlast the building in which it is installed. It has become the material of choice for today’s luxury homes and offices because of its enduring beauty, and because no synthetic material can yet compare to its elegance and performance. Granite is a popular choice for kitchen and bathroom counter tops. Granite tiles of 20 to 50 mm thickness are widely used as covering and building materials for counters, cashier desks, shelves, benches and tables. These surfaces are often referred to as granite, but in fact they can consist of different stone types that include granite and marble.

Read less

There are three main types of rocks: sedimentary, igneous, and metamorphic. Each of these rocks are formed by physical changes—such as melting, cooling, eroding, compacting, or deforming—that are part of the rock cycle.Sedimentary Rocks Sedimentary rocks are formed from pieces of ...Read more

  • There are three main types of rocks: sedimentary, igneous, and metamorphic. Each of these rocks are formed by physical changes—such as melting, cooling, eroding, compacting, or deforming—that are part of the rock cycle.

Sedimentary Rocks

Sedimentary rocks are formed from pieces of other existing rock or organic material. There are three different types of sedimentary rocks: clastic, organic (biological), and chemical. Clastic sedimentary rocks, like sandstone, form from clasts, or pieces of other rock. Organic sedimentary rocks, like coal, form from hard, biological materials like plants, shells, and bones that are compressed into rock.

The formation of clastic and organic rocks begins with the weathering, or breaking down, of the exposed rock into small fragments. Through the process of erosion, these fragments are removed from their source and transported by wind, water, ice, or biological activity to a new location. Once the sediment settles somewhere, and enough of it collects, the lowest layers become compacted so tightly that they form solid rock.

Chemical sedimentary rocks, like limestone, halite, and flint, form from chemical precipitation. A chemical precipitate is a chemical compound—for instance, calcium carbonate, salt, and silica—that forms when the solution it is dissolved in, usually water, evaporates and leaves the compound behind. This occurs as water travels through Earth’s crust, weathering the rock and dissolving some of its minerals, transporting it elsewhere. These dissolved minerals are precipitated when the water evaporates.

Metamorphic Rocks

Metamorphic rocks are rocks that have been changed from their original form by immense heat or pressure. Metamorphic rocks have two classes: foliated and nonfoliated. When a rock with flat or elongated minerals is put under immense pressure, the minerals line up in layers, creating foliation. Foliation is the aligning of elongated or platy minerals, like hornblende or mica, perpendicular to the direction of pressure that is applied. An example of this transformation can be seen with granite, an igneous rock. Granite contains long and platy minerals that are not initially aligned, but when enough pressure is added, those minerals shift to all point in the same direction while getting squeezed into flat sheets. When granite undergoes this process, like at a tectonic plate boundary, it turns into gneiss (pronounced “nice”).

Nonfoliated rocks are formed the same way, but they do not contain the minerals that tend to line up under pressure and thus do not have the layered appearance of foliated rocks. Sedimentary rocks like bituminous coal, limestone, and sandstone, given enough heat and pressure, can turn into nonfoliated metamorphic rocks like anthracite coal, marble, and quartzite. Nonfoliated rocks can also form by metamorphism, which happens when magma comes in contact with the surrounding rock.

Igneous Rocks

Igneous rocks (derived from the Latin word for fire) are formed when molten hot material cools and solidifies. Igneous rocks can also be made a couple of different ways. When they are formed inside of the earth, they are called intrusive, or plutonic, igneous rocks. If they are formed outside or on top of Earth’s crust, they are called extrusive, or volcanic, igneous rocks.

Granite and diorite are examples of common intrusive rocks. They have a coarse texture with large mineral grains, indicating that they spent thousands or millions of years cooling down inside the earth, a time course that allowed large mineral crystals to grow.

Alternatively, rocks like basalt and obsidian have very small grains and a relatively fine texture. This happens because when magma erupts into lava, it cools more quickly than it would if it stayed inside the earth, giving crystals less time to form. Obsidian cools into volcanic glass so quickly when ejected that the grains are impossible to see with the naked eye.

Extrusive igneous rocks can also have a vesicular, or “holey” texture. This happens when the ejected magma still has gases inside of it so when it cools, the gas bubbles are trapped and end up giving the rock a bubbly texture. An example of this would be pumice

Read less

Latest Geology Articles

GEOLOGY HUB Latest Articles

Porphyry Copper Deposits: Formation Processes and Economic Significance

Porphyry copper deposits are among the most significant sources of copper globally, accounting for over 60% of the world’s copper production . 1. Geological Overview a) Geological Background Porphyry copper deposits are typically associated with magmatic arcs related to subduction zones, where an oceanic plate subducts beneath a continental or another oceanic plate. This tectonic […]Table of Contents Toggle 1. Geological Overviewa) Geological Background

Ore-Bearing Hydrothermal Fluids: Key Drivers in Mineral Deposit Formation

Introduction Ore-bearing hydrothermal fluids are one of the most important agents in the formation of mineral deposits. These fluids, which originate from various geological processes, have the ability to dissolve, transport, and deposit metals in economic concentrations. The study of hydrothermal fluids is crucial for understanding ore genesis and guiding mineral exploration. This article provides […]Table of Contents Toggle Introduction1. Sources of Hydrothermal Fluids

How to Identify Gold-Bearing Rocks in the Field: A Geologist’s Guide

Gold has been one of the most sought-after minerals for centuries due to its value and rarity. Prospectors, geologists, and even hobbyists often search for gold-bearing rocks in the field. But how do you identify rocks that contain gold? This guide will provide an in-depth look at the geological features, rock types, and mineral indicators […]Table of Contents Toggle 1. Understanding the Geological Settings of Gold

Alteration in Geology: Types, Processes, and Significance

Introduction Alteration in geology refers to mineralogical, textural, and chemical changes in rocks due to interactions with fluids, temperature variations, and pressure changes. This process occurs in diverse geological settings, including hydrothermal systems, weathering environments, and metamorphic terrains. Understanding alteration is essential in mineral exploration, petrology, geotechnical engineering, and environmental studies. This article explores the […]Table of Contents Toggle IntroductionTypes and Processes of Alteration

Induced Polarization Method in Sulfide Ore Exploration

Introduction The Induced Polarization (IP) method is one of the most effective geophysical techniques used in the exploration of sulfide ore deposits. This method is particularly useful for identifying disseminated sulfide minerals, which are commonly associated with copper (Cu), gold (Au), silver (Ag), zinc (Zn), and lead (Pb) deposits. This article provides a detailed overview […]Table of Contents Toggle Introduction1. Understanding the Induced Polarization ...

Pathfinders for Gold Deposits

Introduction Gold exploration is a complex process that requires a combination of geological knowledge, geochemistry, and geophysical techniques. One of the most effective methods for locating gold deposits is the identification of pathfinder elements and minerals. Pathfinder elements and minerals are geochemical indicators that suggest the presence of gold nearby, even if the gold itself […]Table of Contents Toggle IntroductionWhat Are Pathfinders for Gold Deposits?

The Crucial Role of Structural Control in Hydrothermal Gold Deposits

Introduction Structural control is one of the most significant factors influencing the formation and distribution of hydrothermal gold deposits. Structural geology determines the pathways for mineralizing fluids, the locations of ore deposition, and the overall geometry of gold-bearing zones. Understanding these structural controls is essential for exploration geologists seeking new gold deposits and for mining […]Table of Contents Toggle IntroductionStructural Controls in Hydrothermal Gold Deposits

What is Geology? Defination, Importance, Branches and Facts

Introduction to Geology Geology, derived from the Greek words geo (Earth) and logos (study), is the scientific discipline dedicated to understanding the Earth’s composition, structure, processes, and history. It seeks to answer fundamental questions: How did mountains form? Why do volcanoes erupt? What clues do rocks hold about ancient life? From the atomic structure of […]Table of Contents Toggle Introduction to Geology

Engineering Geological Tests: Purpose, Types, and Applications

Engineering geological tests are critical for assessing the physical, mechanical, and chemical properties of rocks and soils to ensure safe and cost-effective design of infrastructure (e.g., dams, tunnels, foundations). These tests help determine material strength, stability, permeability, and susceptibility to hazards like landslides or subsidence. Below are key tests categorized by their application: 1. Field […]Table of Contents Toggle 1. Field Tests (In-Situ)2. Laboratory Tests

What is sand dunes,Types of Sand Dunes and formation?

Sand Dune Landform: Formation, Types, and Significance Sand dunes are dynamic landforms created by the interaction of wind, sand, and vegetation. These striking natural features are common in deserts, coastal regions, and even in some semi-arid and arid zones. This article explores every aspect of sand dunes, including their formation, types, ecological significance, and role […]Table of Contents Toggle Sand Dune Landform: Formation, Types, and Significance

All Geology Articles