Sign Up

Sign up to join our community!

Sign In

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

You must login to ask a question.

GEOLOGY HUB Latest Questions

The geological time scale is based on the the geological rock record, which includes erosion, mountain building and other geological events. Over hundreds to thousands of ...Read more

Geo Time Scale FY17 1

The geological time scale is based on the the geological rock record, which includes erosion, mountain building and other geological events. Over hundreds to thousands of millions of years, continents, oceans and mountain ranges have moved vast distances both vertically and horizontally. For example, areas that were once deep oceans hundreds of millions of years ago are now mountainous desert regions.

 

How is geological time measured?

The earliest geological time scales simply used the order of rocks laid down in a sedimentary rock sequence (stratum) with the oldest at the bottom. However, a more powerful tool was the fossilised remains of ancient animals and plants within the rock strata. After Charles Darwin’s publication Origin of Species (Darwin himself was also a geologist) in 1859, geologists realised that particular fossils were restricted to particular layers of rock. This built up the first generalised geological time scale.

 

Once formations and stratigraphic sequences were mapped around the world, sequences could be matched from the faunal successions. These sequences apply from the beginning of the Cambrian period, which contains the first evidence of macro-fossils. Fossil assemblages ‘fingerprint’ formations, even though some species may range through several different formations. This feature allowed William Smith (an engineer and surveyor who worked in the coal mines of England in the late 1700s) to order the fossils he started to collect in south-eastern England in 1793. He noted that different formations contained different fossils and he could map one formation from another by the differences in the fossils. As he mapped across southern England, he drew up a stratigraphic succession of rocks although they appeared in different places at different levels.

 

By matching similar fossils in different regions throughout the world, correlations were built up over many years. Only when radioactive isotopes were developed in the early 1900s did stratigraphic correlations become less important as igneous and metamorphic rocks could be dated for the first time.

 

Divisions in the geological time scales still use fossil evidence and mark major changes in the dominance of particular life forms. For example, the Devonian Period is known as the ‘Age of Fishes’, as fish began to flourish at this stage. However, the end of the Devonian was marked by the predominance of a different life form, plants, which in turn denotes the beginning of the Carboniferous Period. The different periods can be further subdivided (e.g. Early Cambrian, Middle Cambrian and Late Cambrian).

 

This is the latest version of the time scale, as revised and published in 2012.

 

4.56 – 2.5 billion years ago

Era: Archaean

 

2.5 billion – 541 million year

Era: Proterozoic

 

541 – 485 million years ago

Period: Cambrian

Era: Palaeozoic

 

485 – 444 million years ago

Period: Ordovician

Era: Palaeozoic

 

444 – 419 million years ago

Period: Silurian

Era: Palaeozoic

 

419 – 359 million years ago

Period: Devonian

Era: Palaeozoic

 

359 – 298 million years ago

Period: Carboniferous

Era: Palaeozoic

 

298 – 252 million years ago

Period: Permian

Era: Palaeozoic

 

252 – 201 million years ago

Period: Triassic

Era: Mesozoic

 

201 – 145 million years ago

Period: Jurassic

Era: Mesozoic

 

145 – 65 million years ago

Period: Cretaceous

Era: Mesozoic

 

66 – 56 million years ago

Epoch: Palaeocene

Era: Cenozoic

 

56 – 34 million years ago

Epoch: Eocene

Era: Cenozoic

 

34 – 23 million years ago

Epoch: Oligocene

Era: Cenozoic

 

23 – 5.3 million years ago

Epoch: Miocene

Era: Cenozoic

 

5.3 -2.6 million years ago

Epoch: Pliocene

Era: Cenozoic

 

2.6 million -10,000 years ago

Epoch: Pleistocene

Period: Quaternary

 

10,000 years ago to the presen

Epoch: Holocene

 

Glossary of Terms

Faunal succession: is the time arrangement of fossils in the geological record.

Formations: are stratigraphic successions containing rocks of related geological age that formed within the same geological setting.

Ga: is an abbrevia

Read less

Latest Geology Articles

GEOLOGY HUB Latest Articles

How to Start Placer Gold Mining Along the River: Complete Guide with Plant Flow and Setup

Placer gold mining along the Indus River offers a promising opportunity for gold recovery using natural alluvial deposits. In this guide, we explain how to start placer gold mining, develop an efficient processing plant, and optimize recovery using vibrating classifiers, sluice angles, and more. 1. What Is Placer Gold Mining? Placer gold refers to gold […]

What is Strip Ratio in Mining

Understanding Strip Ratio in Surface Mining Introduction In open-pit mining, one of the most fundamental concepts determining the viability and cost-effectiveness of a project is the strip ratio. It is a vital metric that informs whether it is economically feasible to mine a specific deposit. This article explores what the strip ratio is, how it’s […]

The Importance of Gossans in Mineral Exploration

1. Introduction to Gossans Definition:Gossans are iron-rich, weathered outcrops formed by the oxidation and chemical weathering of sulfide-bearing mineral deposits. They appear as rusty, reddish-brown to yellow zones on the Earth’s surface and are critical indicators of potential subsurface mineralization. Formation:Gossans develop through the supergene alteration of sulfide ores (e.g., pyrite, chalcopyrite) in the near-surface […]

Porphyry Copper Deposits: Formation Processes and Economic Significance

Porphyry copper deposits are among the most significant sources of copper globally, accounting for over 60% of the world’s copper production . 1. Geological Overview a) Geological Background Porphyry copper deposits are typically associated with magmatic arcs related to subduction zones, where an oceanic plate subducts beneath a continental or another oceanic plate. This tectonic […]

Ore-Bearing Hydrothermal Fluids: Key Drivers in Mineral Deposit Formation

Introduction Ore-bearing hydrothermal fluids are one of the most important agents in the formation of mineral deposits. These fluids, which originate from various geological processes, have the ability to dissolve, transport, and deposit metals in economic concentrations. The study of hydrothermal fluids is crucial for understanding ore genesis and guiding mineral exploration. This article provides […]

How to Identify Gold-Bearing Rocks in the Field: A Geologist’s Guide

Gold has been one of the most sought-after minerals for centuries due to its value and rarity. Prospectors, geologists, and even hobbyists often search for gold-bearing rocks in the field. But how do you identify rocks that contain gold? This guide will provide an in-depth look at the geological features, rock types, and mineral indicators […]

Alteration in Geology: Types, Processes, and Significance

Introduction Alteration in geology refers to mineralogical, textural, and chemical changes in rocks due to interactions with fluids, temperature variations, and pressure changes. This process occurs in diverse geological settings, including hydrothermal systems, weathering environments, and metamorphic terrains. Understanding alteration is essential in mineral exploration, petrology, geotechnical engineering, and environmental studies. This article explores the […]

Induced Polarization Method in Sulfide Ore Exploration

Introduction The Induced Polarization (IP) method is one of the most effective geophysical techniques used in the exploration of sulfide ore deposits. This method is particularly useful for identifying disseminated sulfide minerals, which are commonly associated with copper (Cu), gold (Au), silver (Ag), zinc (Zn), and lead (Pb) deposits. This article provides a detailed overview […]

Pathfinders for Gold Deposits

Introduction Gold exploration is a complex process that requires a combination of geological knowledge, geochemistry, and geophysical techniques. One of the most effective methods for locating gold deposits is the identification of pathfinder elements and minerals. Pathfinder elements and minerals are geochemical indicators that suggest the presence of gold nearby, even if the gold itself […]

The Crucial Role of Structural Control in Hydrothermal Gold Deposits

Introduction Structural control is one of the most significant factors influencing the formation and distribution of hydrothermal gold deposits. Structural geology determines the pathways for mineralizing fluids, the locations of ore deposition, and the overall geometry of gold-bearing zones. Understanding these structural controls is essential for exploration geologists seeking new gold deposits and for mining […]

All Geology Articles