Sign Up

Sign up to join our community!

Sign In

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

You must login to ask a question.

GEOLOGY HUB Latest Questions

There are three main types of rocks: sedimentary, igneous, and metamorphic. Each of these rocks are formed by physical changes—such as melting, cooling, eroding, compacting, or deforming—that are part of the rock cycle. Sedimentary Rocks Sedimentary rocks are formed from pieces of ...Read more

  • There are three main types of rocks: sedimentary, igneous, and metamorphic. Each of these rocks are formed by physical changes—such as melting, cooling, eroding, compacting, or deforming—that are part of the rock cycle.

Sedimentary Rocks

Sedimentary rocks are formed from pieces of other existing rock or organic material. There are three different types of sedimentary rocks: clastic, organic (biological), and chemical. Clastic sedimentary rocks, like sandstone, form from clasts, or pieces of other rock. Organic sedimentary rocks, like coal, form from hard, biological materials like plants, shells, and bones that are compressed into rock.

The formation of clastic and organic rocks begins with the weathering, or breaking down, of the exposed rock into small fragments. Through the process of erosion, these fragments are removed from their source and transported by wind, water, ice, or biological activity to a new location. Once the sediment settles somewhere, and enough of it collects, the lowest layers become compacted so tightly that they form solid rock.

Chemical sedimentary rocks, like limestone, halite, and flint, form from chemical precipitation. A chemical precipitate is a chemical compound—for instance, calcium carbonate, salt, and silica—that forms when the solution it is dissolved in, usually water, evaporates and leaves the compound behind. This occurs as water travels through Earth’s crust, weathering the rock and dissolving some of its minerals, transporting it elsewhere. These dissolved minerals are precipitated when the water evaporates.

Metamorphic Rocks

Metamorphic rocks are rocks that have been changed from their original form by immense heat or pressure. Metamorphic rocks have two classes: foliated and nonfoliated. When a rock with flat or elongated minerals is put under immense pressure, the minerals line up in layers, creating foliation. Foliation is the aligning of elongated or platy minerals, like hornblende or mica, perpendicular to the direction of pressure that is applied. An example of this transformation can be seen with granite, an igneous rock. Granite contains long and platy minerals that are not initially aligned, but when enough pressure is added, those minerals shift to all point in the same direction while getting squeezed into flat sheets. When granite undergoes this process, like at a tectonic plate boundary, it turns into gneiss (pronounced “nice”).

Nonfoliated rocks are formed the same way, but they do not contain the minerals that tend to line up under pressure and thus do not have the layered appearance of foliated rocks. Sedimentary rocks like bituminous coal, limestone, and sandstone, given enough heat and pressure, can turn into nonfoliated metamorphic rocks like anthracite coal, marble, and quartzite. Nonfoliated rocks can also form by metamorphism, which happens when magma comes in contact with the surrounding rock.

Igneous Rocks

Igneous rocks (derived from the Latin word for fire) are formed when molten hot material cools and solidifies. Igneous rocks can also be made a couple of different ways. When they are formed inside of the earth, they are called intrusive, or plutonic, igneous rocks. If they are formed outside or on top of Earth’s crust, they are called extrusive, or volcanic, igneous rocks.

Granite and diorite are examples of common intrusive rocks. They have a coarse texture with large mineral grains, indicating that they spent thousands or millions of years cooling down inside the earth, a time course that allowed large mineral crystals to grow.

Alternatively, rocks like basalt and obsidian have very small grains and a relatively fine texture. This happens because when magma erupts into lava, it cools more quickly than it would if it stayed inside the earth, giving crystals less time to form. Obsidian cools into volcanic glass so quickly when ejected that the grains are impossible to see with the naked eye.

Extrusive igneous rocks can also have a vesicular, or “holey” texture. This happens when the ejected magma still has gases inside of it so when it cools, the gas bubbles are trapped and end up giving the rock a bubbly texture. An example of this would be pumice

Read less

The mining industry routinely collects samples to assist with decision making, whether for exploration, resource estimation, grade control, or plant design and balances. Poorly designed sampling protocols can result in elevated project risk by increasing variability. Critically, such variability produces ...Read more

The mining industry routinely collects samples to assist with decision making, whether for exploration, resource estimation, grade control, or plant design and balances. Poorly designed sampling protocols can result in elevated project risk by increasing variability. Critically, such variability produces both financial and intangible losses. Sample collection, preparation and assay or test work protocols that are optimised to suit the ore type, together with QAQC systems will reduce variability. Many gold deposits display a high natural variability, where the in situ variability can be enhanced by poor sampling practice to yield a high-nugget effect. In this case, specialised protocols are often required. Reporting codes require the Competent Person to consider the quality and implication of sampling programmes. Despite its importance, sampling often does not receive the attention it deserves. In this paper, the importance of good sampling practice is exemplified through a series of case studies, which show the many sampling issues that frequently go unrecognised or unaddressed, resulting in poor decisions and financial loss

Read less

The geological time scale is based on the the geological rock record, which includes erosion, mountain building and other geological events. Over hundreds to thousands of ...Read more

Geo Time Scale FY17 1

The geological time scale is based on the the geological rock record, which includes erosion, mountain building and other geological events. Over hundreds to thousands of millions of years, continents, oceans and mountain ranges have moved vast distances both vertically and horizontally. For example, areas that were once deep oceans hundreds of millions of years ago are now mountainous desert regions.

 

How is geological time measured?

The earliest geological time scales simply used the order of rocks laid down in a sedimentary rock sequence (stratum) with the oldest at the bottom. However, a more powerful tool was the fossilised remains of ancient animals and plants within the rock strata. After Charles Darwin’s publication Origin of Species (Darwin himself was also a geologist) in 1859, geologists realised that particular fossils were restricted to particular layers of rock. This built up the first generalised geological time scale.

 

Once formations and stratigraphic sequences were mapped around the world, sequences could be matched from the faunal successions. These sequences apply from the beginning of the Cambrian period, which contains the first evidence of macro-fossils. Fossil assemblages ‘fingerprint’ formations, even though some species may range through several different formations. This feature allowed William Smith (an engineer and surveyor who worked in the coal mines of England in the late 1700s) to order the fossils he started to collect in south-eastern England in 1793. He noted that different formations contained different fossils and he could map one formation from another by the differences in the fossils. As he mapped across southern England, he drew up a stratigraphic succession of rocks although they appeared in different places at different levels.

 

By matching similar fossils in different regions throughout the world, correlations were built up over many years. Only when radioactive isotopes were developed in the early 1900s did stratigraphic correlations become less important as igneous and metamorphic rocks could be dated for the first time.

 

Divisions in the geological time scales still use fossil evidence and mark major changes in the dominance of particular life forms. For example, the Devonian Period is known as the ‘Age of Fishes’, as fish began to flourish at this stage. However, the end of the Devonian was marked by the predominance of a different life form, plants, which in turn denotes the beginning of the Carboniferous Period. The different periods can be further subdivided (e.g. Early Cambrian, Middle Cambrian and Late Cambrian).

 

This is the latest version of the time scale, as revised and published in 2012.

 

4.56 – 2.5 billion years ago

Era: Archaean

 

2.5 billion – 541 million year

Era: Proterozoic

 

541 – 485 million years ago

Period: Cambrian

Era: Palaeozoic

 

485 – 444 million years ago

Period: Ordovician

Era: Palaeozoic

 

444 – 419 million years ago

Period: Silurian

Era: Palaeozoic

 

419 – 359 million years ago

Period: Devonian

Era: Palaeozoic

 

359 – 298 million years ago

Period: Carboniferous

Era: Palaeozoic

 

298 – 252 million years ago

Period: Permian

Era: Palaeozoic

 

252 – 201 million years ago

Period: Triassic

Era: Mesozoic

 

201 – 145 million years ago

Period: Jurassic

Era: Mesozoic

 

145 – 65 million years ago

Period: Cretaceous

Era: Mesozoic

 

66 – 56 million years ago

Epoch: Palaeocene

Era: Cenozoic

 

56 – 34 million years ago

Epoch: Eocene

Era: Cenozoic

 

34 – 23 million years ago

Epoch: Oligocene

Era: Cenozoic

 

23 – 5.3 million years ago

Epoch: Miocene

Era: Cenozoic

 

5.3 -2.6 million years ago

Epoch: Pliocene

Era: Cenozoic

 

2.6 million -10,000 years ago

Epoch: Pleistocene

Period: Quaternary

 

10,000 years ago to the presen

Epoch: Holocene

 

Glossary of Terms

Faunal succession: is the time arrangement of fossils in the geological record.

Formations: are stratigraphic successions containing rocks of related geological age that formed within the same geological setting.

Ga: is an abbrevia

Read less

Latest Geology Articles

GEOLOGY HUB Latest Articles

What is Cinnabar

✳️Cinnabar is a toxic mercury sulfide mineral with a chemical composition of HgS. 🔷It is the only important ore of mercury. It has a bright red color that has caused people to use it as a pigment, and carve it into jewelry and ornaments for thousands of years in many parts of the world. Its […]

Kimberlite

🔷Kimberlites, named after the town of Kimberly, South Africa, where they were first described, are volcanic rocks that originate in Earth’s mantle.🔷They are mined exclusively for diamonds. The photo shows the “Big Hole” at Kimberly.🔷The Hole was mined from 1871 to 1914 and reached a depth of 240 m below the surface. Subsequently it filled […]

Geological Time Scale

Geological Time Scale The geological time scale is a system of chronological measurement that relates geological events and geological time to a numerical scale. It is used to describe the timing and relationships between events that have occurred throughout Earth’s history. The time scale is divided into four main parts: Eons, Eras, Periods, and Epochs. […]

What are Rare Earth Elements and why are they important?

What are Rare Earths?  The Japanese call them “the seeds of technology.”  The US Department of Energy calls them “technology metals.”  They make possible the high tech world we live in today – everything from the miniaturization of electronics, to the enabling of green energy and medical technologies, to supporting a myriad of essential telecommunications and defense systems.  […]

Geology 101

Geology 101 is the study of the Earth and its materials, structures, processes, and history. It is a broad field that encompasses many different disciplines, including mineralogy, petrology, paleontology, and geophysics. Geologists study the Earth’s physical features, including its rocks, minerals, soils, and water. They also study the Earth’s internal structure and the processes that […]

Volcano

What is Volcano I heard about the volcano before 🤔??….We all see volcanoes in movies and news, but did you ask yourself why or how do they happen? On our trip today, we will explore the volcano and see its formation, why it happens, and how.. Are you ready, hero ??Let’s start our journey The […]

What is an Unconformity in Geology

An unconformity is a surface of erosion or non-deposition that separates two rock units that have different ages. It represents a time gap in the geologic record, and it occurs when sedimentary rocks are tilted, uplifted, and eroded before new sediment is deposited on top of them. There are three types of unconformities: Disconformities A […]

Mineral

Minerals are homogeneous, naturally occurring, inorganic solids that have a definite crystalline structure and chemical composition. In 1995, the World Minerals Organization put another definition saying that “a mineral is an element or a chemical compound that is naturally crystalline and formed as a result of geological processes.”Minerals have their own specific physical properties which […]

Geology Online Quizzes Questions and Answers

Geology online Quizzes questions and answers. Free online quiz with multiple-choice questions (MCQ) without registration. Geology Multiple Choice Questions geology questions and answers | geology questions for competitive exams | geology exam questions. Geology quiz questions and answers.geology quizes. Geology online quiz.

Metamorphism

The mineralogical, chemical, and structural adjustment of solid rocks to physical and chemical conditions which have generally been imposed at depth below the surface zones of weathering and cementation, and which differ from the conditions under which the rocks in question originated. Metamorphism means to “change form,”. In other words, metamorphism is a process that […]

All Geology Articles